

Christoph Vogelsang

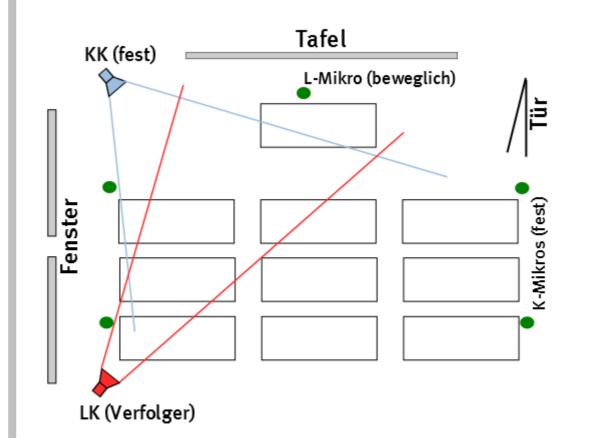
Videoanalyse von Physikunterricht

Mögliche Ziele

Exploration

Prototypische Handlungsmuster & Unterrichtsskripte, Entwicklung von Beobachtungskategorien, inhaltliche Analyse von Unterrichtsgesprächen

z.B. Vergleich von Unterrichtsmustern in Finnland und **Deutschland**


Messung

Häufigkeit & Dauer von Handlungen, Ausprägung von Unterrichtsmerkmalen, Inferenzstatistische Hypothesenprüfung

z.B. Anteil des Lernzuwachses der Schüler aufgrund eines anderen Experimentierformats

Datenbasis

Standard Aufnahmesetting mit Übersichtskamera (KK) & Lehrerkamera (LK)

Probleme

- starke Unterschiede von Klassen & Unterricht (Stichprobenwahl)
- Kontrolle von Einflussfaktoren auf den Unterricht
- **Technische Realisierung** (Tonaufnahme sämtlicher Äußerungen)
- Rechtliche Verordnungen (Aufnahmen im Schulbereich)

Analysebenen

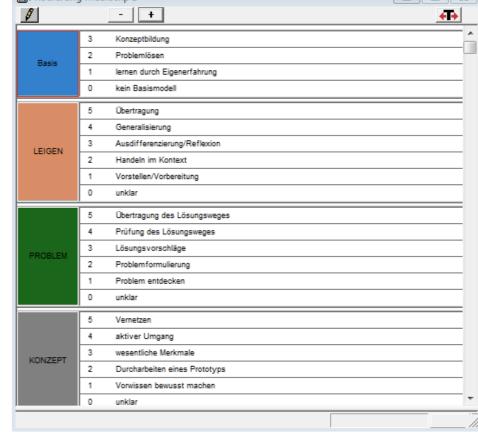
Sichtstruktur

Direkt beobachtbare Unterrichtsmerkmale z.B. Zeitanteile im Gespräch, Anzahl & Verteilung von Meldungen

- **Vorteil:** leicht erfassbar (nieder-inferent)
- Nachteil: erklären kaum Unterschiede in den Schülerleistungen

Tiefenstruktur

Die dem Unterricht zu Grunde liegenden latenten, "kognitiven" Unterrichtsmerkmale z.B. Lernphasen, Qualität der Motivierung


- Vorteil: hoher Zusammenhang zu Schülerleistungen
- Nachteil: erfordert zur Erfassung "hohe" Interpretationsleistung der Beobachter (hoch-inferent)

Operationalisierungen

Kategorienbasierte Kodierung

- intervallbasiert: Zuordnung von Kategorien zu festen Zeitintervallen (üblich: 10-30 Sekunden)
- Turn-basiert: Zuordnung von Kategorien zu variablen Zeitintervallen (vorher festzulegende Turns)

Likertskalen

- Beurteilung der Ausprägung eines Merkmals auf einer mehrstufigen Skala
- auf beliebige Zeitintervalle beziehbar
- ermöglicht Beurteilung der Tiefenstruktur

Bitte geben Sie an, für wie stark ausgeprägt sie die folgenden Unterrichtshandlungen halten.	trifft gar nicht zu	trifft eher nicht zu	trifft eher zu	trifft völlig zu	Indik ator- Nr.
Die Lehrperson teilt den Schülerinnen und Schülern mit, was sie im "aktuellen" Unterricht durchnehmen möchte.	О	О	О	О	1
Die Lehrpersonen verbalisiert Aufgabenstellungen, Fragen und Anforderungen an die Schülerinnen klar und verständlich.	О	О	О	О	2
Die Lehrperson weist darauf hin, was sich die Lernenden merken sollen.	О	О	О	О	3

Generelle Probleme

- Hoher Zeitaufwand
- Skalierung der Messwerte
- Reliabilität & Validität des Messverfahrens schwer zu prüfen

Literatur

- Seidel, T.; Prenzel, M.; Duit, R.; Lehrke, M. (2003): Technischer Bericht zur Videostudie "Lehr-Lern-Prozesse im Physikunterricht"; BIQUA. Kiel: IPN. Janík, T. & Seidel, T. (Hrsg.)(2009). The power of video studies in
- investigating teaching and learning in the classroom. Münster: Waxmann. • E. Klieme, I. Hugener, C. Pauli-Friesdorf, K. Reusser (Hrsg.) (2006): Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-deutschen Videostudie "Unterrichtsqualität, Lernverhalten und mathematisches Verständnis". Videoanalysen. Frankfurt am Main: DIPF

Interrater-Reliabilität

Aufgrund der hoch-inferenten Messungen kodieren Videoanalysen mehrere Beobachter (Rater) das Videomaterial. Zur Überprüfung der Zuverlässigkeit der Kodierungen wird anschließend die Übereinstimmung der Beobachter mit Hilfe statistischer Kennwerte abgeschätzt (Vergleich mit Standardgrenzwerten).

• Nominalskalierte Daten (Cohen's κ, zwei Rater)

z. B. Einzelarbeit, Klassengespräch etc.

$$\kappa = \frac{P_0 - P_e}{1 - P_e}$$

$$\kappa = \frac{P_0 - P_e}{1 - P_e}$$

$$P_0 \text{ Relativer Anteil identischer Urteile}$$

$$P_e \text{ Relativer Anteil der Übereinstimmung}$$

$$P_e = \frac{1}{N^2} \cdot \sum_{i=1}^{S} n_{1j} \cdot n_{2j}$$
bei zufälligem Rateverhalten

n_{1j,} n_{2j} Anzahl Intervalle, die von Rater 1 bzw. 2 insgesamt zu Kategorie j zugeordnet wurden N Gesamtzahl Intervalle

Ordinalskalierte Daten (Spearman's ρ, Rangkorrelationskoeffizient)

$$\rho = 1 - \frac{6 \cdot \sum_{j=1}^{n} d_{j}^{2}}{n \cdot (n^{2} - 1)}$$

 $ho=1-rac{6\cdot\sum_{j=1}^n d_j^2}{n\cdot(n^2-1)}$ n Anzahl der beurteilten Fälle d $_j$ Differenz zwischen den von beiden Ratern vergeben Rangplätzen für Fall i

z. B. Qualitätsurteile auf Likertskalen

Intervallskalierte Daten (Intraklassenkorrelationskoeff., ICC)

$$ICC_{unjust} = \frac{MS_{zw} - MS_{res}}{MS_{zw} + (k-1) \cdot MS_{res} + \frac{k}{n} \cdot (MS_{rat} - MS_{res})}$$

MS Varianzschätzungen einer Varianzanalyse bzgl. der Varianzquellen beurteilter Fall, Rater & Residuen

K Anzahl Rater, n Anzahl beurteilter Fälle

Ob eine Likertskalen als intervallskalierbar angenommen werden kann, erfordert weitere Prüfungen und ist ein traditioneller Streitfall der Psychologie.