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Every security analysis of quantum-key distribution �QKD� relies on a faithful modeling of the employed
quantum states. Many photon sources, such as for instance a parametric down-conversion �PDC� source,
require a multimode description but are usually only considered in a single-mode representation. In general, the
important claim in decoy-based QKD protocols for indistinguishability between signal and decoy states does
not hold for all sources. We derive bounds on the single-photon transmission probability and error rate for
multimode states and apply these bounds to the output state of a PDC source. We observe two opposing effects
on the secure key rate. First, the multimode structure of the state gives rise to a new attack that decreases the
key rate. Second, more contributing modes change the photon number distribution from a thermal toward a
Poissonian distribution, which increases the key rate.
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I. INTRODUCTION

The security of classical cryptography is based on the
high computational complexity of the decryption process
combined with the condition that the adversary only has a
limited amount of computational power. In contrast,
quantum-key distribution �QKD� allows two parties, Alice
and Bob, to share a secret key that is inaccessible to an
eavesdropper Eve whose power is only limited by the laws
of quantum physics. In 1984, Bennett and Brassard intro-
duced the first QKD protocol BB84 �1�. It is still the most
commonly used protocol, although many more have been
proposed since then �2–4�.

This first theoretical proposal assumed perfect devices,
namely, single-photon sources and error-free transmission
and detection. With the development of sophisticated secu-
rity proofs, these restrictions could gradually be lessened.
First, security has been proved in the presence of noise �5,6�.
In the next step, the necessity of single-photon sources has
been taken out of the equation �7�. This, however, reduced
the achievable key rate drastically because multiphoton
events gave rise to the photon number splitting �PNS� attack
�8–10�, which Alice and Bob were not able to distinguish
from natural losses.

This issue has been resolved with the decoy method,
which was introduced by Hwang �11� and has been further
developed to a practically realizable form by several re-
searchers �12–15�. In this method, additional decoy states
with a different photon number distribution than the primary
signal states are randomly introduced. It is crucial that decoy
states share all other physical characteristics of the signal so
that Eve cannot distinguish between decoy and signal. Con-
sequently, the decoys are affected by the PNS attack in the
same way as the signal states, and this perturbation of the
system reveals Eve’s presence. Since Eve has to design her
attack in a way that cannot be detected by Alice and Bob
�otherwise the protocol is aborted�, her attack possibilities
are drastically limited when she is confronted with a decoy

protocol. This enables Alice and Bob to achieve an improved
key rate.

The important assumption that Eve cannot distinguish be-
tween photons arising from signal and decoy states is trivi-
ally fulfilled for a single-mode description where all photons
are created by the same creation operator. However, this
model does not match experimental reality well. Hence, in
this paper, we treat the scenario where photons are excited
into many different modes and the excitation probability for
each mode differs between signal and decoy states. This mul-
timode description is, for instance, necessary for a realistic
representation of the states created by a parametric down-
conversion �PDC� source, in which case the different modes
correspond to different spectral modes �16�.

This paper is organized as follows. In Sec. II, we review
the decoy method and introduce the notation necessary for
the subsequent analysis. Section III presents the description
of a multimode state with special emphasis on spectral
modes for the description of a PDC state. In Secs. IV and V,
we describe attack possibilities when multimode states are
used and derive bounds that allow us to calculate the achiev-
able key rate in this scenario. Section VI finally applies the
analysis to the multimode PDC state and gives bounds on the
achievable key rate.

II. DECOY METHOD

The security of the BB84 protocol is based on the no-
cloning theorem �17�, which prevents Eve from making a
copy of a transmitted single photon. However, the security
argument is not applicable to multiphoton events because for
these events Alice implicitly encodes the same information
on all photons in the pulse. This, in turn, allows Eve to
obtain an identical copy of Bob’s state by splitting away one
of the photons. Hence only detection events arising from
single photons give a positive contribution to the secure key
rate. With current technology, Alice is not able to determine
the number of photons her source emitted. Thus Alice and
Bob cannot simply ignore multiphoton events. In this sce-
nario, a lower bound on the secure key rate S is given by
�7,12�*wolfram.helwig@physik.uni-erlangen.de
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S � q�Y1
�s�p1

�s��1 − H�e1
�s��� − Q�s�f�E�s��H�E�s��� . �1�

Here pn
�s� �n�N0� denotes the photon number distribution of

Alice’s source, f�E�s�� is the error correction efficiency,
H�x�=−x log2�x�− �1−x�log2�1−x� is the binary Shannon en-
tropy, and q accounts for incompatible basis choices of Alice
and Bob. In the standard BB84 protocol, q=1 /2. The overall
detection probability is given by the gain

Q�s� = Y0p0
�s� + Y1

�s�p1
�s� + YM

�s�pM
�s�, �2�

where the yields Y0
�s�, Y1

�s�, and YM
�s� are the detector click

probabilities conditioned on emitted zero-, one-, and multi-
photon events of Alice’s source, respectively. Analogously,
the zero-, one-, and multiphoton error rates, e0, e1 and eM,
are defined as the error rates conditioned on emitted zero-,
one-, and multiphoton events, respectively. The relation to
the total quantum bit error rate �QBER� E�s� is given by

Q�s�E�s� = e0Y0p0
�s� + e1

�s�Y1
�s�p1

�s� + eM
�s�YM

�s�pM
�s�. �3�

The QBER and the gain Q�s� are directly accessible from the
recorded data of the QKD protocol. However, since Alice
and Bob do not know when a single photon was sent, they
cannot determine the exact values of Y1

�s� and e1
�s� but need to

estimate them using worst-case assumptions. Prior to the de-
coy method, they had to assume that all multiphoton events
produce a click at Bob’s detector. This corresponds to YM

�s�

=1, and a lower bound on Y1
�s� can be calculated with Eq. �2�.

This estimate, however, lies well below the single-photon
transmission probability caused by natural losses. In addi-
tion, Alice and Bob have to assume that all errors arise from
single-photon events, resulting in a very high estimate of e1

�s�.
These values are actually achieved if Eve performs a PNS
attack �8–10� and lead to a drastically reduced key rate �7�.

The decoy method enables Alice and Bob to attain better
estimates of Y1

�s� and e1
�s�. This is achieved by randomly in-

troducing decoy states with independent photon number dis-
tributions. For each photon number distribution, the gain and
QBER can be determined individually, resulting in better
bounds on Y1

�s� and e1
�s�.

In this paper, we base our analysis on the so-called
vacuum+weak decoy method �13,14�, which uses two decoy
states. Deliberately interspersing the signal stream with
vacuum states �pn=�n0, gain Q=Y0� allows Alice and Bob to
determine the dark count probability Y0. The second decoy
state is of low intensity and features a photon number distri-
bution pn

�d� that differs from the photon number distribution
pn

�s� of the regular signal. In the following, we will refer to
this state as the decoy state and to the state with photon
number distribution pn

�s� as the signal state. The gain for the
decoy state is given by

Q�d� = Y0p0
�d� + Y1

�d�p1
�d� + YM

�d�pM
�d�, �4�

with the yields defined equivalently to the signal yields. The
yield Y0 for an emitted zero-photon state has to be the same
for all states because Eve cannot distinguish between vacua
arising from different states. However, there is no a priori
reason for the single- and multiphoton yields to be the same
for signal and decoy. In the analyses up to now, it was as-
sumed that Eve cannot distinguish between n-photon events

arising from signal and decoy state, resulting in Yn
�s�=Yn

�d�

�n�N0�. Note that this is the assumption we will loosen in
Sec. IV, as it is generally not justified in a multimode de-
scription of the states. However, proceeding with Yn

�s�=Yn
�d�,

from Eqs. �2� and �4� the lower bound

Y1,LB =
p2

�s�

p2
�s�p1

�d� − p1
�s�p2

�d�

��Q�d� −
p2

�d�

p2
�s� Q�s� −

p2
�s�p0

�d� − p0
�s�p2

�d�

p2
�s� Y0� �5�

on the signal single-photon yield can be derived if the addi-
tional condition

YM
�d�

YM
�s� �

p2
�d�/pM

�d�

p2
�s�/pM

�s� �6�

is satisfied. This is, for instance, fulfilled if both signal and
decoy have a Poissonian or thermal distribution with a lower
mean photon number for the decoy distribution.

With a similar equation to Eq. �3� for the decoy QBER
�i.e., � · ��s�→ � · ��d��, an upper bound on the single-photon er-
ror rate of the decoy state can be calculated as

e1
�d� � e1,ub

�d� =
1

p1
�d�Y1,LB

�d� �E�d�Q�d� − e0Y0p0
�d�� . �7�

The postulated indistinguishability of n-photon states for sig-
nal and decoy gives e1,ub

�s� =e1,ub
�d� and Y1,LB

�d� =Y1,LB
�s� , because

Y1
�d�=Y1

�s� and e0=1 /2, since a dark count gives the wrong
result 50% of the time.

The derived bounds �Eqs. �5� and �7�� are much tighter
than the worst-case assumptions without decoy states. There-
fore using them in Eq. �1� results in a significant improve-
ment in the achievable secure key rate �12�.

III. MULTIMODE STATE

QKD analyses generally assume that Alice’s output states
are accurately represented by a single-mode description as

��s/d� = 	
n

p�s/d��n�
n��n
 , �8�

where p�s/d��n� denotes the signal and decoy photon number
distributions.

This form intrinsically implies that all emitted photons
have identical properties, and hence the method presented in
Sec. II may be applied. A restriction to output states of this
form can, however, be a very strong requirement that is hard
to meet in the laboratory. For a PDC source, for instance, this
requires the production of two output beams with indepen-
dent spatiospectral mode structures, which is known to be a
very demanding task �18�.

In this paper, we extend the decoy method to deal with
multimode states of the form

��s/d� = �
k=1

N

	
n

p�s/d��k,n�
n;k��n;k
 . �9�

Here 
n ;k� describes a state with n photons in the kth mode
and p�s/d��k ,n� is the photon number distribution for the kth
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mode for signal or decoy. All the N modes are mutually
orthogonal, �n ;k 
m ; l�=�nm�kl. The modes can be spectral
modes, spatial modes, or embedded into any other degree of
freedom the information carrier under consideration might
have. For instance, in the case of spectral mode, the states

n ;k� are of the form


n;k� =
1


n!
�A�k

† �n
0� , �10�

A�k

† �� d��k���a†��� , �11�

where ��k���� are a set of orthonormal functions. For a de-
tailed description of this notation, see �19�.

In Secs. IV and V, we extend the decoy method to states
of the form given by Eq. �9�. This means we derive bounds
on Y1

�s� and e1
�s� for such a state. In the analysis it is assumed

that Alice and Bob, as well as Eve, know all the parameters
of the source, in particular the photon number distributions
p�s/d��k ,n�, precisely. In addition, Eve is able to distinguish
between photons in different modes without disturbing the
states, as this is possible in principle for orthogonal modes.
However, Alice and Bob are not able to discriminate between
photons in different modes owing to current technological
limitations. In Sec. VI, the results are then applied to the
aforementioned PDC source.

IV. BOUND ON Y1
(s)

Recall that in a single-mode description, the yields for
n-photon signal and decoy states are identical and thus a
lower bound on Y1

�s� can be computed by Eq. �5� from the
known gains and photon number distributions.

In this section, we develop a means of computing a lower
bound on Y1

�s� for multimode states as defined in Eq. �9�. For
states of this type, Yn

�s�=Yn
�d� is no longer valid for n�1.

Note, however, that Y0 is still the same for signal and decoys
because for zero emitted photons the resulting state is always
described by the same vacuum state and thus Eve cannot
treat these pulses differently for signal and decoys. The deri-
vation of the lower bound on Y1

�s� proceeds in three steps.
First, we derive a lower bound on the signal single-photon
yield Y1

�s� for a given decoy single-photon yield Y1
�d�. Then,

we determine an upper bound on the decoy multiphoton
yield YM

�d� for a given signal multiphoton yield YM
�s�. Finally,

with these two relations, we are able to calculate a lower
bound on Y1

�s� for given signal and decoy gains, Q�s� and Q�d�.
Step 1: Lower bound on Y1

�s� for a given Y1
�d�. Assume Eve

has to let a certain fraction Y1
�d� of the decoy single-photon

events pass to achieve the desired decoy gain. In this step,
we are seeking the lowest possible value for the signal
single-photon yield Y1

�s� that is compatible with the given
Y1

�d�. Using Eq. �9�, we find the conditioned one-photon state
to be

�1
�s/d� = 	

k

mk
�s/d�
1;�k��1;�k
 , �12�

where we define the mode occupation probabilities by

mk
�s/d� =

p�s/d��k,1� �
i�k

p�s/d��i,0�

P1
�s/d� , �13�

and the single-photon probability is given by

P1
�s/d� = 	

k

p�s/d��k,1��
i�k

p�s/d��i,0� . �14�

We have to assume that Alice does not have the technology
to determine in which mode a photon resides. Remember
that she cannot even determine the total number of emitted
photons for a given event. However, an apparatus that mea-
sures the number of photons in each mode individually is
possible in principle because all modes are orthogonal.
Therefore, if we want to claim unconditional security, we
have to give Eve knowledge about how many photons each
mode contains. For the single-photon case, this means that
she knows in which mode the photon is. This, in turn, allows
Eve to reach different single-photon yields for signals and
decoys by selectively blocking modes if the mode occupa-
tion probabilities mk differ for signal and decoy state.

Figure 1 illustrates how this can be accomplished for
the case of two different modes with m1

�d�=0.7, m2
�d�=0.3,

m1
�s�=0.6, and m2

�s�=0.4. If Eve blocks all photons in the sec-
ond mode, 70% of the decoy single photon events are trans-
mitted, but only 60% of the signal single photons pass
through the channel. This results in the yields Y1

�s�=0.6 and
Y1

�d�=0.7.
For a given decoy single-photon yield Y1

�d�, we denote the
smallest possible value Eve can achieve for Y1

�s� as Y1,lb
�s� �Y1

�d��.
In our example above, we have Y1,lb

�s� =6 /7Y1
�d� for Y1

�d��0.7
because in this case the photons of the first mode are suffi-
cient to reach Y1

�d�. Thus Eve can completely block the sec-
ond mode and let only photons of the first mode pass. For
Y1

�d��0.7, Eve additionally has to let a fraction �Y1
�d�

−0.7� /0.3 of the photons in the second mode pass to reach
Y1

�d�, resulting in Y1,lb
�s� =0.6+ �Y1

�d�−0.7� /0.3�0.4.
This concept is easily extended to all N modes that con-

tribute to the state of Eq. �12�. Without loss of generality, we
take m1

�s� /m1
�d��m2

�s� /m2
�d�� . . . �mN

�s� /mN
�d�. To achieve the

smallest possible ratio between signal and decoy single-
photon yield, Eve has to let photons from the mode with the
smallest possible ratio between the mode occupation prob-
abilities, mode 1, pass. However, if all photons from this
mode are not enough to reach the given decoy yield Y1

�d�, Eve
has to let photons from additional modes pass. To achieve the
smallest possible ratio Y1

�s� /Y1
�d�, they have to be chosen from

the modes with the next smallest ratio between the mode

FIG. 1. �Color online� Eve blocks all photons in the second
mode. This results in different single-photon yields for signal and
decoy state.
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occupation probabilities, which are modes 2 ,3 , . . . ,K. Here
the number K of required modes is implicitly defined by

	
k=1

K−1

mk
�d� � Y1

�d� 	 	
k=1

K

mk
�d�, �15�

such that both inequalities hold. If Eve lets all photons from
the first K−1 modes and a fraction �Y1

�d�−	k=1
K−1 mk

�d�� /mK
�d� of

the photons in the Kth mode pass, she achieves the desired
decoy single-photon yield,

Y1
�d� = 	

k=1

K−1

mk
�d� +

Y1
�d� − 	

k=1

K−1

mk
�d�

mK
�d� mK

�d�. �16�

Since the photons are chosen from the modes that have the
smallest ratio between the number of signal photons and de-
coy photons, this mode selection gives the smallest possible
value,

Y1,lb
�s� �Y1

�d�� = 	
k=1

K−1

mk
�s� +

Y1
�d� − 	

k=1

K−1

mk
�d�

mK
�d� mK

�s�, �17�

for the signal single-photon yield for a given Y1
�d�.

Step 2: Upper bound on YM
�d� for a given YM

�s�. In this step,
we want to find the highest possible decoy multiphoton yield
that is compatible with a given signal multiphoton yield.
With minor modifications, this works out analogously to step
1, the only difference being that we have to keep track of all
possible distributions of the photons among the modes. For
this purpose, we introduce the set Q= �l�N0

N 
	k=1
N lk�2�.

Each member of this set represents a multiphoton event with
li photons in the ith mode.

Similarly to mk for the single-photon case, we define hl as
the probability that a multiphoton event possesses the photon
distribution specified by l�Q. It is given by

hl
�s/d� =

1

PM
�s/d��

k=1

N

p�s/d��k,lk� �18�

with the multiphoton probability

PM
�s/d� = 	

n�2
P2

�s/d� = 1 − P0
�s/d� − P1

�s/d�, �19�

where Pn
�s/d� denotes the convoluted photon number distribu-

tion of all modes. Accordingly, P0
�s/d�=�k=1

N p�s/d��k ,0� and
P1

�s/d� is given by Eq. �14�. Employing the mode distribution
probabilities of Eq. �18�, the states of Eq. �9� conditioned on
a multiphoton event can be written as

�M
�s/d� = 	

l�Q

hl
�s/d��

k=1

N


lk;�k��lk;�k
 . �20�

Again, Eve is not only allowed to make a photon number
measurement but can also determine the mode distribution l
of a multiphoton event. Thus she can selectively block mul-
tiphoton events with certain mode distributions. The highest
possible YM

�d� for a given YM
�s� is achieved if Eve lets only

events with the highest ratio between hl
�d� and hl

�s� pass. To

sort the mode distributions accordingly, we define L1
=arg maxL�Q hL

�d� /hL
�s� and recursively

Li = arg max
L�Q∖�L1,. . .,Li−1�

hL
�d�

hL
�s� for i � 2. �21�

With that definition, we can apply the same method as in step
1. For a given YM

�s�, we define K implicitly by

	
i=1

K−1

hLi

�s� � YM
�s� 	 	

i=1

K

hLi

�s�. �22�

The highest possible YM
�d�, compatible with a given YM

�s�, is
achieved if all multiphoton events with mode distributions L1
to LK−1 and the remaining fraction �YM

�s�−	i=1
K−1 hLi

�s�� /hLK
with

mode distribution LK are transmitted to Bob’s side. As a re-
sult we have the upper bound

YM,ub
�d� �YM

�s�� = 	
i=1

K−1

hLi

�d� +

YM
�s� − 	

i=1

K−1

hLi

�s�

hLK

�s� hLK

�d� �23�

on the decoy multiphoton yield YM
�d� for a given signal mul-

tiphoton yield YM
�s�.

Step 3: The bound on Y1
�s� for given gains Q�s� and Q�d�.

With the derived relations between the yields of signal and
decoy events, we are now able to calculate a lower bound on
Y1

�s� for given signal and decoy gains. If the relations were
just given by a constant ratio, this would be in direct analogy
to the single-mode case where the ratio of signal and decoy
yields was fixed. This means we could plug the relations into
Eq. �4� and solve Eqs. �2� and �4� for a lower bound on Y1

�s�.
However, the derived relations �Eqs. �17� and �23�� do not
have a simple functional form. Hence an iterative approach is
required to determine the lower bound on Y1

�s� from the set of
nonlinear equations �Eqs. �2�, �4�, �17�, and �23��.

We first solve Eqs. �2� and �4� for YM
�s� and Y1

�d�, respec-
tively,

YM
�s� =

1

PM
�s� �Q

�s� − P0
�s�Y0 − P1

�s�Y1
�s�� , �24�

Y1
�d� =

1

P1
�d� �Q

�d� − P0
�d�Y0 − PM

�d�YM
�d�� . �25�

Alice and Bob know Y0 from the vacuum decoy state. They
can measure Q�s� and Q�d�, and they know P0, P1, and PM for
both signal and decoy because they know the properties of
their source. In addition, a trivial lower bound on Y1

�s� is
given by Y1

�s��Y1,LB
�s� =0. Starting with that value, a tighter

bound can be calculated by the following algorithm:
�1� Start by calculating an upper bound on YM

�s� from Y1,LB
�s�

using Eq. �24�,

YM,UB
�s� =

1

PM
�s� �Q

�s� − P0
�s�Y0 − P1

�s�Y1,LB
�s� � . �26�

�2� Next, use YM,UB
�s� to derive an upper bound on YM

�d� with
Eq. �23�,

YM,UB
�d� = YM,ub

�d� �YM,UB
�s� � . �27�
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�3� Obtain a lower bound on Y1
�d� from YM,UB

�d� with Eq.
�25�,

Y1,LB
�d� =

1

P1
�d� �Q

�d� − P0
�d�Y0 − PM

�d�YM,UB
�d� � . �28�

�4� Finally, determine a lower bound on Y1
�s� from Y1,LB

�d� ,
using Eq. �17�,

Y1,LB
�s� = Y1,lb

�s� �Y1,LB
�d� � . �29�

The value obtained in Eq. �29� can iteratively be plugged
into the previously described steps as initial value, which
results in an even tighter bound. After each iteration step, the
final value for Y1,LB

�s� is at least as large as the starting value,
so the iteratively obtained values are monotonically increas-
ing. As Y1,LB

�s� �1 is bounded from above �not more than
100% of the events can result in a click of Bob’s detector�,
the series converges, giving the final lower bound on the
single-photon yield of the signal state.

V. BOUND ON e1
(s)

We also need to bound the error rate of the single-photon
events of the signal state from above. In this case, Eve wants
to introduce as many errors as possible into the single-photon
events of the signal state while leaving the measured QBERs
as expected because this way she can gain the maximal
amount of information from the signal single-photon events.
An upper bound on the decoy single-photon events is given
by Eq. �7� if we use Y1,LB

�d� given by the value �Eq. �28��
obtained in the iteration for determining Y1,LB

�s� . Since the er-
rors also have to be assumed to be under Eve’s control, she is
free to choose the modes into which the errors occur. The
highest error rate of the signal single-photon events com-
pared to the error rate of the decoy single-photon events is
obtained if the errors are introduced into modes with a large
mk

�s� /mk
�d� ratio. Hence, if we again define K implicitly by

	
k=K

N

mk
�d� � e1,ub

�d� 	 	
i=K−1

N

mk
�d�, �30�

the worst-case assumption is that all photons in modes
N ,N−1, . . . ,K and a fraction �e1,ub

�d� −	k=K
N mk

�d�� /mK−1
�d� of the

photons in mode K−1 are erroneous. This gives the upper
bound on the signal single-photon error rate,

e1,ub
�s� = 	

k=K

N

mk
�s� +

e1,ub
�d� − 	

k=K

N

mk
�d�

mK−1
�d� mK−1

�s� . �31�

VI. NUMERICAL SIMULATIONS

With the lower bound on Y1
�s�, obtained by Eq. �29� in the

iteration, and the upper bound on e1
�s� given by Eq. �31�, we

can determine a lower bound on the achievable key rate for
states of form �9� with Eq. �1�.

In the following simulations, we consider the simplest
example for the use of a type-II PDC source in a QKD pro-
tocol. A type-II PDC process emits photons in two different

polarization modes, called signal and idler. �This signal in
the signal or idler beam distinction is not to be confused with
the signal in the signal or decoy distinction. This standard
terminology is somewhat unfortunate for PDC sources in
QKD protocols.� In the scenario under consideration, the
idler photons are ignored and the signal photons are used as
information carriers. In addition to the polarization modes, a
realistic model of the PDC output state has to take spectral
modes into account. Thus the output state has to be described
as follows �16�:



�s/d�� = �
k=1

N

	
n

c�s/d��k,n�
n;k�s
n;k�i , �32�

where 
n ;k�s/i describes a state with n photons in the kth
spectral modes as introduced in Eq. �10� �with in general
different sets of orthogonal functions for signal and idler�.
Signal and decoy are created with different pump intensities,
I�s� and I�d�, which are reflected in the photon number distri-
butions for the spectral modes

p�s/d��k,n� = 
c�s/d��k,n�
2 = sech2 rk
�s/d� tanh2n rk

�s/d�, �33�

with the squeezing parameters rk
�s/d���k


I�s/d�. Here �k de-
pends on the PDC crystal and the pump and indicates how
prominent the kth mode is �see �16� for more details�. Since
we are only interested in the signal photons, we have to trace
over the idler modes, which give the state

��s/d� = tri

�s/d���
�s/d�
 �34�

= �
k=1

N

	
n

p�s/d��k,n�
n;k��n;k
 . �35�

This state has the form of Eq. �9�, and we can therefore apply
the decoy analysis of the previous sections.

The photon number distribution for each spectral mode
�Eq. �33�� is a thermal distribution. Thus the single-mode
case ��k=�k1� corresponds to thermal photon number distri-
bution. With more contributing modes, the distribution is
changed from thermal toward a Poissonian distribution �for
an explanation of this effect see �16��. This is shown in Fig.
2 for the values of Table I and a mean photon number of 0.6.

Let us first illustrate, by means of a simple example, how
different mode occupation probabilities arise for signal and
decoy state. Consider a PDC state with just two spectral
modes that have �1=
0.75 and �2=
0.25. The mode occu-
pation probabilities for a single-photon event are then given
by
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FIG. 2. �Color online� The photon number distributions for dif-
ferent pump widths 
.
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m1�I� =
p�1,1�p�2,0�

p�1,1�p�2,0� + p�1,0�p�2,1�
=

tanh2 r1

tanh2 r1 + tanh2 r2
,

�36�

m2�I� =
tanh2 r2

tanh2 r1 + tanh2 r2
. �37�

They inherit the intensity dependence from the squeezing
parameters r1 and r2. This intensity dependence is shown in
Fig. 3 along with chosen decoy and signal intensities such
that we end up exactly with the states shown in Fig. 1.

Now, we focus on a physically realistic case. Our source
is a waveguided periodically poled potassium titanyl phos-
phate �KTP� crystal with a grating period of �=68.40 �m,
length of 5 mm, and waveguide width and height both
4 �m. The pump laser spectrum is centered at a wavelength
of 775 nm and the signal and idler are frequency degenerate
around 1550 nm. We study four different pump bandwidths

, which lead to different values for �k �16�. They are shown
in Table I.

We first consider the case of 
=4 nm. For given pump
intensities for signal and decoy state, the mode occupation
probabilities can be calculated with Eqs. �13� and �18� for the
single-photon and multiphoton states, respectively. We as-

sume that Eve designs her attack such that her presence can-
not be detected. This implies that the measured gains and
error rates for signal and decoy state have the values that are
expected from natural losses and detection errors. According
to �12�, they are given by

Q�s/d� = 	
n

YnPn
�s/d�, �38�

E�s/d� =
1

Q�s/d�	
n

enYnPn
�s/d�, �39�

with the overall �i.e., convoluted� photon number distribu-
tions Pn

�s/d� and

Yn � �n + pdark, �40�

en =
1

Yn
�edet�n +

1

2
pdark� . �41�

In these equations, pdark is the dark count probability of
Bob’s detector, edet is the detection error �i.e., the probability
that Alice prepares a 0 �1�, but Bob detects a 1 �0��, and
�n=1− �1−��n is the probability that at least one of n pho-
tons arrives at Bob’s side and is detected. The overall detec-
tion probability �=10−�/10�det of each photon is determined
by the channel attenuation � in dB and the detector effi-
ciency �det. We use the experimental parameters in Ref. �20�
in the simulations, which are shown in Table II.

With the gains and QBER for signal and decoy states
�Eqs. �40� and �41��, a lower bound on the signal single-
photon yield Y1

�s� and an upper bound on the signal single-
photon error rate e1

�s� can be calculated as described in Secs.
IV and V. This allows us to compute a lower bound on the
achievable key rate according to Eq. �1�. We compare this
key rate to the key rate for a single-mode source with the
same photon number distribution. In other words, the secure
key rate one would falsely expect to be achievable if the
multimode structure of the PDC state is ignored. It is calcu-
lated by Eq. �1� with the bounds on Y1

�s� and e1
�s� given by

Eqs. �5� and �7�. The corresponding key rates are both plot-
ted in Fig. 4 against the channel attenuation. We find that the
key rate drops about 10% when Eve’s new possible attack is
taken into account by adjusting the bounds on Y1

�s� and e1
�s�

accordingly. In both scenarios, the mean photon number of
the decoy state is 0.1, and the mean photon number of the
signal state is optimized to give the highest key rate.

Figure 5 shows the secure key rate for all different pump
widths given in Table I. One can see that the secure key rate
is higher when more modes contribute to the PDC process.
This effect is explained by the change in the photon number
distribution. With more contributing modes, the photon num-
ber distribution is shifted from a thermal distribution to a

TABLE I. �k for the KTP crystal for different pump widths.

Width 

�nm� �k

1
0.959, 0.194, 0.152, 0.098, 0.088, 0.033, 0.032,
0.014

2 0.871, 0.463, 0.140, 0.064, 0.054, 0.028, 0.001

4 0.690, 0.555, 0.383, 0.222, 0.107, 0.054, 0.050

0.044, 0.023, 0.012, 0.004, 0.003, 0.001

8 0.511, 0.478, 0.427, 0.364, 0.296, 0.228, 0.167

0.117, 0.078, 0.056, 0.047, 0.037, 0.023, 0.015

0.014, 0.011, 0.006, 0.003, 0.001
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FIG. 3. �Color online� The mode occupation probabilities m1

and m2 for a single-photon event in dependence of the pump
intensity.

TABLE II. Characteristics of Bob’s detector.

Dark count probability 1.7�10−6

Detection error 3.3%

Detector efficiency 4.5%
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Poissonian distribution �see Fig. 2�. The Poissonian distribu-
tion is favorable in comparison to the thermal distribution
because the ratio between single-photon and multiphoton
events increases. This permits a higher mean photon number
for the signal state, which in turn increases the achievable
key rate and distance. The resulting optimal mean photon
numbers in dependence of the channel attenuation are de-
picted in the inset of Fig. 5.

VII. CONCLUSION

In summary, we have pointed out the necessity to care-
fully pay attention to the output states of the utilized sources
but likewise demonstrated that the demand for perfect indis-
tinguishability of the signal and decoy photons, which is
hard to implement in practice, can be loosened for only a
small cost in the key rate.

The analysis was applied to a parametric down-
conversion �PDC� source, where the weak decoy state is cre-
ated by pumping the crystal with a lower pump intensity. For
about ten effectively contributing modes, we observed a drop
of the key rate to roughly 90% of the corresponding value in
the single-mode case with the same photon number distribu-
tion. The simulation was performed for different numbers of
effectively contributing modes, leading to the conclusion that
the advantageous change in the photon number distribution,
which occurs if more modes contribute, has a higher effect

on the key rate than the aforementioned decrease due to the
new attack possibility presented to Eve by the multimode
structure of the states.

This analysis can also be used for a heralded PDC source,
as long as the heralding detector is frequency independent, as
the resulting states are also of the form of Eq. �9�. For her-
alding with a frequency dependent detector, the analysis has
to be extended to the case where the density matrices for
signal and decoy state are diagonal in different bases con-
trary to our condition given by Eq. �9�.

Another possibility to produce the decoy state is by pas-
sive decoy generation �21,22�. In this scheme, the complica-
tions that arise because of the multimode structure of the
PDC state can be avoided if a frequency independent detec-
tor is available for the decoy generation, as the spectral prop-
erties of n-photon states would then be the same for signal
and decoy state. This, however, is not the case for a fre-
quency dependent detector because such a detector leads to
signal and decoy states with different spectral properties.
Again, the resulting states require an analysis for signal and
decoy states that are diagonal in different bases.

We believe that this paper is a step toward allowing more
general signal and decoy states, which will significantly sim-
plify the design of QKD sources.
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